Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework

نویسندگان

  • Peidong Yang
  • Dongyuan Zhao
  • David I. Margolese
  • Bradley F. Chmelka
  • Galen D. Stucky
چکیده

A simple and general procedure has been developed for the syntheses of ordered largepore (up to 14 nm) mesoporous metal oxides, including TiO2, ZrO2, Nb2O5, Ta2O5, Al2O3, SiO2, SnO2, WO3, HfO2, and mixed oxides SiAlOy, Al2TiOy, ZrTiOy, SiTiOy, ZrW2Oy. Amphiphilic poly(alkylene oxide) block copolymers were used as structure-directing agents in nonaqueous solutions for organizing the network-forming metal oxide species. Inorganic salts, rather than alkoxides or organic metal complexes, were used as soluble and hydrolyzable precursors to the polymerized metal oxide framework. These thermally stable mesoporous oxides have robust inorganic frameworks and thick channel walls, within which high densities of nanocrystallites can be nucleated. These novel mesoporous metal oxides are believed to be formed through a mechanism that combines block copolymer self-assembly with alkylene oxide complexation of the inorganic metal species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid templating of high surface-area, mesoporous, nanocrystalline rutile using a polyether block amide copolymer template.

Highly crystalline rutile with a specific surface area as high as 280 m(2) g(-1) and well-connected uniform mesoporosity has been synthesized by rigid templating using commercial, low-cost polyether block amide. This general, simple synthesis route for high surface-area mesoporous nanocrystalline oxides and nanocomposite membranes is important for catalysis, sensors, energy storage, solar cells...

متن کامل

Porosity control in mesoporous polymers using CO2-swollen block copolymer micelles as templates and their use as catalyst supports.

Mesoporous polymers with tunable large mesopores and thin mesopore walls were synthesized through a CO2-swollen micelle templating route. The mesopore size and porosity properties of the polymers can be easily modulated by adjusting CO2 pressure. The as-synthesized mesocellular polymers are excellent candidate supports for preparing heterogeneous catalysts.

متن کامل

Patterning Porous Oxides within Microchannel Networks

Nature abounds in hierarchical structures that are formed through highly coupled and often concurrent synthesis and assembly processes over both molecular and long-range length scales. The existence of these structures such as abalones and diatoms has both biological and evolutionary significance. It has been a long-sought goal to mimic the natural processes responsible for these exquisite arch...

متن کامل

Synthesis and Characterization of Mesostructured Tin Oxide with Crystalline Walls

Shortly after the original synthesis of silica-based mesoporous molecular materials (MCM-41) with uniformly sized pores,1,2 the supramolecular templating approach was extended to the synthesis of non-siliceous mesoporousmaterials based onboth transition andmaingroup metal oxides because of their potential application as solid electrolyte devices, high surface area catalysts, and sorbents, as we...

متن کامل

Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999